IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES

sponding to a particular value of e. For each graph the
resonator cross-sectional dimensions are given. Radius
4 of the cylindrical resonator is given explicitly; widths
A* and B* of the rectangular resonator must be calcu-
lated from the given value of 8 [using (6)]. Alternatively
A* and B* may be obtained graphically with the aid of
Fig. 9. This is a graph of A* vs. B* for parametric values
of 8. The results shown in Figs. 3-8 cover a range of
frequencies from zero to 30 kMc/s lengths from zero to
30 mils (1 mil=10"%inch), e from 50 to 500, 4 from 25
to 200 mils, and 8 from 0.01202 to 0.09619 mils~—'. This
range of 8 includes cross-sectional widths from 40 to
600 mils. The actual program included a much larger
range of values. The complete results will be presented
in graphical and tabular form in an AFCRL Research
Report [9]. The values given here hopefully include
those of most practical interest in the microwave region
at the present time.
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Impedances of Offset Parallel-Coupled

Strip Transmission Lines

J. PAUL SHELTON, JR., MEMBER, IEEE

Abstract—An offset parallel-coupled strip configuration is de-
scribed, in which the mechanical parameters are strip width, strip
offset, and ratio of strip spacing to ground-plane spacing. The electri-
cal parameters are dielectric constant, characteristic impedance,
even and odd mode impedance. The configuration is analyzed by con-
formal imapping techniques. Explicit design equations are derived in
which the mechanical parameters are expressed in terms of the elec-
trical parameters. Illustrative results are presented, and the limita-
tions on coupling strength, characteristic impedance, and strip con-
figuration are discussed.

INTRODUCTION
MANY MICROWAVE components are based

upon parallel-coupled transmission-line sec-

tions. Examples are found among directional
couplers, baluns, hybrid junctions, phase shifters, and
filters [1]-[3]. In some cases, several coupled regions
are used to obtain increased control over the theoretical
characteristics of the component. In general, multi-
section components require different coupling values for
the various sections. The subject of this paper is the
analysis of a parallel-coupled strip transmission-line con-
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figuration that permits smooth variation of coupling
from some designed maximum level to any lower value.

The first strip transmission-line technique for realiz-
ing variable coupling was edge-coupled coplanar strips
[4]. The drawback to this method is the limitation of p,
the ratio of even to odd mode impedance, to a maximum
of two or three.

Getsinger proposed a technique for achieving very
tight coupling in which a line with single center strip is
sandwiched between the two strips of a second line [5].
This method requires the use of four layers of dielectric,
and the transmission lines are unlike, one having single
strip and one having double strips. Furthermore, it is
somewhat difficult to determine the maximum coupling
that is available for a given strip spacing.

Impedance relations for parallel strips, one above the
other between ground planes, were derived by Cohn [6].
This configuration requires three dielectric layers and
provides maximum coupling for given layer thicknesses.
For this configuration, variation in coupling can be
easily achieved in practice by offsetting the strips with-
out changing the thicknesses of the dielectric layers. In
general, both strip width and overlap are functions of
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coupling. This offset configuration has not previously
been available to the microwave engineer because it has
not been analyzed. An analysis is presented here.

In the following paragraphs, the even and odd mode
impedances are derived for the offset configuration
shown in Fig. 1, in which zero-thickness strips are
located in the dielectric-filled region between infinite
ground planes. First, expressions for the necessary
fringing capacitances are obtained. Then the equations
for the various impedances are derived. Finally, curves
of coupling vs. strip width and offset are presented for
sample configurations. The derivation of fringing capaci-
tance is described in the Appendix.

l ! |
LT

Fig. 1.

@ f—

Offset parallel-coupled strip transmission lines.

I't will be noted that the uncoupled single strip, which
is obtained when the separation is made very large, is
not centered between the ground planes. This con-
figuration has been avoided by some workers in the field
because of concern over parallel-plate radiation. This
concern is unfounded. The same care must be taken
with any unbounded transmission line to avoid radia-
tion, whether it uses a centered strip, an off-center strip,
or an open strip over single ground plane. The configura-
tion described in this paper has been used successfully
over three years by the author and his associates.

FRINGING CAPACITANCES

The technique used to determine even and odd mode
impedance is an approximate one. That is, the capaci-
tance between strip and ground is separated into
parallel-plate and fringing components. As a result,
there are two cases to be considered, depending on the
relative positions of the strip edges. In Fig. 2(a), the
case for tight coupling is shown, and the approximate
limitations on strip dimensions are

w
1—35

We

—z 0.7,
s

= 0.35

For loose coupling, shown in Fig. 2(b), the limitations
are

= 0.35

= 0.85.
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(b)

Coupling configurations. (a) Configuration for tight

Fig. 2.
coupling. (b) Configuration for loose coupling.

The effects of these limitations on the allowable range
of strip configuration, maximum coupling, and char-
acteristic impedance are discussed in a later section.

The derivation of the fringing capacitances is dis-
cussed in the Appendix. The Schwartz-Cristofel trans-
formation is used to achieve the following results:

Tight coupling:

7Cro = — { “Slogs
1 pr
—f———log[ :I (1)
) P+ +Dr—90 -1
2
7Cre = — ’ log s — 2log s + 4 log (s + pr)
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Furthermore, the conformal mapping procedure yields
the following expressions for offset dimensions:
For tight coupling,

145 P
TW, = —— log —
2 r
1 -5 149 (r——s)
. 5
+ 5 og( +P> P (5)
For loose coupling,
mw, = § 10 —l]——}—(l—s)lo <1—_~g> (6)
o ga & 1+a)

IMPEDANCE EQUATIONS

Although it is possible to plot families of curves re-
lating Cyo, Cre, w, ws, and s, it is very useful to relate the
fringing and parallel-plate capacitances and the asso-
ciated strip dimensions to the even and odd mode im-
pedances, which are the basic design parameters of any
component in which the coupled lines are used. One
listing of parameters, which can be considered the inde-
pendent variables, is

Z,, the characteristic impedance

¢, the relative dielectric constant of the medium

p, theratioof Z,. to Z,,.
The basic relationships are
Ve Zo
Zoo = Zo/\/p
Ce = 1200/ & Zoe
Co = 120n/V & Zos.

Lo =

(7

For tight coupling, the mode capacitances may be
expressed

1 i
Co :2w<1 +‘">+Cfu

— 5 s
2w e
N s(1 —5) T
2w
Co= —+ Cr. ()
1—35

where (s, and (y, are given by (1) and (2), and the
parallel-plate capacitances are those indicated in Fig.
2(a). Note that the capacitance between strips is ap-
proximated by 2w/s rather than 2w./s, an artifice which
simplifies the expressions for fringing capacitances and
allows explicit solution.

For loose coupling, the capacitances are

1 1
.= 2 + ——1+Cs, — Cila =
C w(l . N S) f v(a )
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4
1 — 352
470

1 — s

4+ Cto + Ci(a = )

¢ + Cre + C(a =) 9)

I

where Cy, and Cy. are given by (3) and (4), and Cy{a= =)
is the fringing capacitance at the edge of a single, un-
coupled strip. The parallel-plate capacitances are those
indicated in Fig. 2(b). It is easily found that

2 1=
7rCf(a=°°)= —m10g< 5 >

2 : <1+S>
1-s 8\ /-

At this point, the continuity of the development is
strengthened if the cases are treated separately. It is
noted that the equations so far obtained do not even
present an implicit solution to the problem. It is neces-
sary to find some connection between the results of the
conformal mapping and the basic relationships of

(1)—(9).

(10)

Derivation for Tight Coupling

For tight coupling, the required connection results
from

CQ_SCg:Cfg—'SCfo
2
()
21 s
= — O _—
e
s
1 — ps\ 120« )
- < o >v? Z, from (7]

Therefore, the implicit solution for tight coupling is
\2 ~
(2
s
) .
6072 8 <pr>
)

It is possible to eliminate p and r as follows:

B (14 pr/s)? B 6O7rf_ Lj_ff
- - P [«; za< Vo >J ()

(pr/s)
pr A — 2+ A — 44
Let B = — = 5 -
§

[from (8)]

[from (1) and (2)]

1 - pS \/:7'_‘Zo1
Ve

Let 4

(12)

The two signs of the square root represent the plus or
minus values of w, which produce the same value of
C.—sC,. Using the equation for » in terms of p, p is
found to be
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(B—l)( _2H>+ 1/(“; > (B—1)°+45B

2

(13)

where the plus sign on the root gives p >o.

The steps in the explicit solution, given Z,, €., p, and s,
are now complete. The procedure is to solve (11) for 4,
(12) for B, (13) for $ and r, then use (1) or (2) for Cy,
or Cre, (7) and (8) for w, and, finally, (5) for w,.

It is worthwhile making a comparison with the results
of Cohn for parallel-coupled strips. Examination of (3)
reveals that w,=0 for p=r=+/s. For this condition,
(1) and (2) reduce to

2 1

Cro= — —l:;—logs+~log 1 - s):|
mlLl—3s
2

Cfe=-——[ logs+log(1—s)—log4:|,
rl1l—

which are equivalent to Cohn's approximate results, as
given in his equations (4), (5), (6), and (7) [6]. Further-
more, the implicit solution reduces to

Ve Z,
6072

1- PrmaxS

14
\/ Pmax ( )

log 4.

Equation (14) is extremely useful. It relates puu, s, €,
and Z, in a single expression and allows direct solution
of the zero-offset configuration. In many practical cases,
one has a maximum value of p to be realized; (14)
specifies the required corresponding value of s. It is
emphasized, however, that (14) is limited by the ap-
proximate analysis used. For very large pg.. or small s,
one must use Cohn’s virtually exact equations, (1), (2),
and (3) [6]. In general, (14) holds for

\/pmaxer_l g1<03,
6072

provided pmax > 2.

Derivation for Loose Coupling

For loose coupling, the required combination of ex-
pressions is

1207 /1
AC=Cy—C, = —_”—<—2>
Ve Zo\ Vp

2 14 ag
=——10g( )
v aq

k = aq,

2 1+ %
AC = —log (—_Ik_—)

T

[from (8)]

[from (3) and (4)]

Letting
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or

1
B (15)

7AC
e (29

Using the equation for ¢ in terms of @, then solving
for a in terms of &,

4/(s — k) s—k
a= -+ - :
s+ 1 s+ 1
The positive root guarantees a>0.
The explicit solution for loose coupling, given Z,, e,
p, and s, is now accomplished by solving (8) for AC, (15)

for &, (16) for ¢ and g, (3) or (4) for Cy, and Cy,, (9) for
w, and (6) for we.

COLLECTED EQUATIONS

An orderly arrangement of the design equations re-
sulting from the previous section is presented in order
to facilitate the computation of parameters.

Equations for tight coupling:

60n? 1 — ps
[
'\/erZo \/P
B_pr_A—2+\/A2—4A
s 2
1+ 1 2
(B—l)( S>+1/<—+—S><B—1)2+4s3
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1—3s
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c, = 1B0mve
Ve Zo
w = 5(12_5) (Cy — Cr2)

=)

The condition for tightest coupling w,=0 is given by

1= pmaxs  Ve&Z,

\/I?ax = o log 4.
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Equations for loose coupling:

120mv/p
Ve Z,
1200 p—1

\/_E:Zo '\/;

G-
s+1 s+ 1

ot 2s ']
k s+ 1 s+ 1
T Org:( 2 > st 1
a—+ 5
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e e sttt
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Cila==)
T () g (H)]
mL1l-+s 2 1—35 2
1 — s?
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ILLUSTRATIVE RESULTS AND LIMITATIONS
ON PARAMETERS

In the particular application for which the coupled
impedances were evaluated, two of the parameters of
(14) were held fixed. The dielectric constant ¢, was 2.32,
corresponding to polyolefin materials, and the character-
istic impedance was 50 ohms. It is conceivable that
many similar situations, in which the operating im-
pedance and the dielectric material are predetermined,
might be encountered. In such a case, the remaining
parameters s and pu.. can be related by a curve, as
shown in Fig. 3. The value of pm. varies from two to six,
and the approximate range of s is 0.1 to 0.4, accounting
for the probable range of coupling values amenable to
this strip configuration.

Also shown on the curve are the values of s which cor-
respond to layer thickness ratios involving small inte-
gral numbers. These values are more easily realized in
terms of readily available sheet thicknesses, although it
must be noted that material manufacturers are develop-
ing considerable flexibility in this respect.

Since the fringing capacitances were determined by an
approximate procedure and the accuracy of the results
was based on maintaining certain limitations on the
strip dimensions, it is of interest to estimate the effects
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of these limitations on the allowable physical and elec-
trical parameters of the coupled strip configuration. The
following limitations were imposed by the fringing
capacitance calculation:

In general:

W
1 -3

= 0.35.

For loose coupling:

2w,

’l—l-s

= 0.85.

For tight coupling:

We
—z 0.7.
5

The first inequality concerns the parallel-plate region
between the outer surface of the strip and the ground
plane. The second expression deals with the region be-
tween the “exposed” inner strip surface and the opposite
ground plane; the constant chosen for this condition is
0.85 rather than 0.7 because the fringing fields from the
edge of the intervening strip extend into this region.
The third relation defines the parallel-plate region be-
tween strips.

The effects on strip spacing s and on +/e.Z, are con-
sidered in Fig. 4. Curve 4 is the limit imposed by the
relationship 2w/(145) = 0.7 for a single uncoupled strip.
Curve B is obtained when the strips are located one over
the other (w,=0), and the imitation w/s= 0.7 is applied.
Thus, curves 4 and B define the allowable parameters
for parallel coupled strips when offsetting is not used.
Curve C is obtained by setting w,/s=0.7 and
2w,/ (1-+s) =0.85, then assuming w=w,+w, for the un-
coupled strip and calculating the corresponding value
of /e.Z,. Since the width of coupled strips is always
smaller than that of uncoupled strips, curve C is too
high. Two calculated points are available which satisty
the criteria of curve C, and they are shown on the
dashed curve. The dashed curve is a rough estimate of
the correct location of curve C. The shaded region repre-
sents the range of parameters for which the strip dimen-
sions for all values of coupling are very accurately ob-
tained. That is, the curves based on tight- and locse-
coupling approximation can be joined by a negligible
discontinuity.

The results of Fig. 4 should not be interpreted to for-
bid the use of parameters falling outside of the shaded
region. In some cases, the coupling values which corre-
spond to inaccurate strip dimensions are not used. In
other cases, the inaccurate portions of the curves can be
corrected by interpolation. However, it is seen that the
most versatile application of this design procedure is
obtained for values of s in the range of approximately
0.14 to 0.20, corresponding to values Of pms. in the
neighborhood of 3.5 to 4.5.
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Fig. 5. Representative coupling curves.

Figure 5 contains curves relating coupling coefficient

Ve —1

b= o e

Vp+1
to strip dimensions for representative values of s, for
Z,=50Q and ¢, =2.32. An indication of the approxima-

tion involved in the analysis is seen in the imperfect
match of the strong- and weak-coupling curves.

CONCLUSIONS

A design procedure for offset parallel-coupled strips
has been derived. The equations are arranged in terms
of the electrical parameters, coupling strength (p) and
characteristic impedance (Z,). Because of the approxi-
mations involved in the conformal mapping analysis,
limitations are imposed on the range of characteristic
impedance that can be used and on the ratio of strip
separation to ground-plane spacing(s). However, the
ranges in which good accuracy is achieved are those most
likely to be used in practical strip transmission-line com-
ponents and circuits.

APPENDIX
DERIVATION OF FRINGING CAPACITANCES

The procedure for determining the fringing capaci-
tances for a strip transmission-line configuration is
straightforward and is outlined for review purposes.
The term “fringing” is generally used when the fields at
one edge of the strip do not significantly influence those
at the opposite edge. Thus, the strips can be assumed to
be infinitely wide, as indicated in Fig. 6. The fringing
capacitance is defined as the difference between the ideal
parallel-plate capacitance and the actual value. For in-

finite strips, of course, the capacitances become infinite,
but the difference is finite.
The steps in the procedure are as follows:

1) The conductor configuration of Fig. 6 is mapped
onto the real axis of the complex plane by means
of the Schwartz-Cristofel transformation. In the
cases under consideration, the transformation is
particularly simple. For both configurations con-
sidered, the polygon in the w-plane being mapped
onto a real axis of the z-plane has six sides, and the
vertex angles are all 4180 degrees. One result of
this condition is that the differential equation of
the transformation is readily soluble in terms of
logarithmic functions.

2) The parallel-plate capacitances for even and odd
modes are selected, and the appropriate expres-
sions are written.

3) The actual capacitances are determined by calcu-
lating charge density for unit voltages on the
strips. The result is in the form of capacitance
distribution.

4) The fringing capacitance is obtained by subtract-
ing the expression of Step 2 from that of Step 3
and integrating over the infinite strip cross section.

If the reader is unfamiliar with this procedure, an
excellent description and illustrative example has re-
cently been presented by Wheeler [7].

Case for Large p: Considering first the case for strong
coupling or large p, the conformal transformation is
shown in Fig. 7. The equation of the transformation is

1 11— pr
——\:s log 5 + log (z — 1) (2; + ——)]
T 2 s

w =
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-0 +x
(a)
- + .
(b)
Fig. 6. Infinite strip approximation. (a) Strong coupling.
(b) Loose coupling.
w-plane
Y2 -
V=gl v,
Y4 - | J——
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w =$ log z + %_‘r-ré log (z-1) (2*‘%:)
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I | ! Il
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s
Fig. 7. Conformal transformation—large p.
where
n 1+
?
2 0<p< =
1+

145 2s
149 <r<
2s 1+ 2
It is immediately possible to express the offset width w,,
in terms of s, p, and r,

171 1 - 1 —
[ +310g£+ slog( +P><r s)]
T 2 r 2 s+p/\1 —7r

Woe = —

The basis for the parallel-plate capacitances is indi-
cated in Fig. 8. For the even mode, C,,= C1+ C,; for the
odd mode, Cp=Ci+Co4C3+Cy. The capacitance of
both strips to ground is computed for this case because
the strip arrangement is not symmetrical. The resulting

C3
Cy

Fig. 8. Parallel-plate capacitances—large p.
w-plane
Wé IS —
V=41 wg —_—
VS
W, e—— W2
4 L‘— Wc(‘) — w3
w - {1-5) 1o 21 +{1-5) log 2
27 S 2tqa 9
z-plane

K] X2 X3 X4 x5 Xé
i { t L
- -a -aq 0 q 1
Fig. 9. Conformal transformation—small p.

[
: |
v
! : “
2 R —
[ Cyq
L

Fig. 10. Parallel-plate capacitances—small p.

fringe capacitance is equal to the sum of the fringe
capacitances of both edges of a single strip of finite
width. Application of the previously mentioned con-
ventional techniques yields the required results for the
fringing capacitances.

Case for Small p: The conformal transformation for
the loose coupling configuration is shown in Fig. 9. The
equation of the transformation is

w = i[(l — ) log <zi-;*qla> + (1 4 s) log z]

2
where
2s

a+

s+ 1 s+ 1 O0<a< ™

1= s 1 s+ 1
a+ ——<g< -
L 2 s+ 1 2

As for the strong coupling case, it is possible to deter-
mine . directly:

W, = i|:s log (%) + (1 — s)log (E—g)]
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A negative value of w, represents a gap rather than over-
lap between strip edges.

The basis for parallel-plate capacitance is shown in
Fig. 10. For both even and odd modes, C,=C1+Cs.
Since the strip arrangement is symmetrical in this case,
the fringe capacitance is calculated for only one strip.
Again, the required expressions for fringing capacitance
are found by conventional methods.
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Theotetical Analysis of Twin-Slab Phase
Shifters in Rectangular Waveguide

ERNST SCHLOMANN

Abstract—The differential phase shift and the losses to be ex-
pected in phase shifters using two oppositely magnetized ferrite slabs
located symmetrically in a rectangular waveguide have been calcu-
lated for varicus locations and thicknesses of the ferrite slabs. For
small thicknesses of the ferrite slabs, the differential phase shift in-
creases rapidly with increasing thickness reaching a maximum when
the thickness is approximately 1/10 of the free space wavelength.
The calculated insertion loss of a 360-degree phase shifter decreases
with increasing slab thickness for small thickness, reaching a mini~
mum when the thickness is approximately 1/25 of the free space
wavelength. The minimum insertion loss calculated with the assump-
tion that the imaginary part of the diagonal component of the perme-
ability tensor is 0.01 and that dielectric loss can be neglected is ap-
proximately 0.85 dB. The peak power handling capability has also
been analyzed. It can conveniently be summarized in terms of a high-
power figure of merit., For reasonably high values of this figure of
merit, a peak power capability of the order of 100 kW is anticipated.

I. INTRODUCTION

NE OF THE more promising device configura-
tions for digital ferrite phase shifters is that of a

rectangular waveguide containing circumferen-
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tially magnetized ferrite toroids of suitable length [1],
[2]. Such a structure is shown in Fig. 1. A very similar
structure, which is more readily amenable to theoretical
analysis, is shown in Fig. 2. Here the ferrite toroid has
been replaced by two oppositely magnetized slabs which
extend over the complete height of the waveguide. The
propagation of electromagnetic waves through wave-
guides of the type shown in Fig. 2 has previously been
analyzed by Lax et al. [3], [4] and by von Aulock [5].
Here we use substantially the notation of von Aulock.

In the previous work, only the differential phase shift
and the field configuration have been discussed. The
present paper contains more detailed results than pre-
viously published, concerning the differential phase shift
and its dependence upon parameters such as spacing,
width, dielectric constant, and remanent rnagnetization
of the ferrite slabs. In addition, the present paper con-
tains a discussion of the insertion loss and the peak
power limitations of these devices.

For odd TE,,-modes the characteristic equation for
the reduced propagation constant I' can be expressed as
v(1 + cot ez cot @) 4 ¢ cot ey + n cot ay

M

cotd =
cot ay cot aa — 1
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