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spending to a particular value of e. For each graph the

resonator cross-sectional dimensions are given. Radius

.4 of the cylindrical resonator is given explicitly; widths

A* and B* of the rectangular resonator must be calcu-

lated from the given value of ~ [using (6)]. Alternatively

A* and B“ mav be obtained graphically with the aid of

Fig. 9. This is ~ graph of A’ vs. B* for parametric values

of ~. The results shown in Figs. 3–8 cover a range of

frequencies from zero to 30 kMc/s lengths from zero to

30 roils (1 mil = 10-3 inch), e from 50 to 500, A from 25

to 200 roils, and P from 0.01202 to 0.09619 roils-l. This

range of P includes cross-sectional widths from 40 to

600 roils. The actual program included a much larger

range of values. The complete results will be presented

in graphical and tabular form in an AFCRL Research

Report [9]. The values given here hopefully include

those of most practical interest in the microwave region

at the present time.
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Impedances

Stl’lp
●

of Offset Parallel~Coupled

Transmission Lines

J. PAUL SHELTON, JR., MEMBER, IEEE

.4bstracf-Arr offset parallel-coupled strip configuration is de-

scribed, in which the mechanical parameters are strip widkh~ strip

offset, and ratio of slzip spacing to ground-plane spacing. The electri-

cal parameters are dielectric constant, characteristic impedance,

even and odd mode impedance. The configuration is analyzecl by con-

formal rnappixlg techniques. Explicit design equations are derived in

which the mechanical parameters are expressed in terms of the elec-

trical parameters. Illustrative results are presented, and the limita-

tions on coupling strength, characteristic impedance, and strip con-

figuration are discussed.

INTRODUCTION

M

ANY MICROWAVE components are based

upon parallel-coupled transmission-line sec-

tions. Examples are found among directional

couplers, baluns, hybrid junctions, phase shifters, and

filters [I ]– [3 ]. In some cases, several coupled regions

are used to obtain increased control over the theoretical

characteristics of the component, In general, multi-

section components require different coupling values for

the various sections. The subject of this paper is the

analysis of a parallel-coupled strip transmission-line con-
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figuration that permits smooth variation of coupling

from some designed maximum level to any lower value.

“rhe first strip transmission-line technique for rea!iz-

ing variable coupling was edge-coupled coplanar strips

[4]. The drawback to this method is the limitation of p,

the ratio of even to odd mode impedance, tcj a maxim urn

of two or three.

Getsinger proposed a technique for achieving vta-y

tight coupling in which a line with single center strip is

sandwiched between the two strips of a second line [5].

This method requires the use of four layers of dielectric,

and the transmission lines are unlike, one having sirygle

strip and one having double strips. Furthermore, it is

somewhat difficult to determine the maximum coupling

that is available for a given strip spacing.

Impedance relations for parallel strips, one above the

other between ground planes, were derived by Cohn [6].

This configuration requires three dielectric layers and

provides maximum coupling for given layer thicknesses.

For this configuration, variation in coupling can be

easily achieved in practice by offsetting the strips with-

out changing the thicknesses of the dielectric layers. In

general, both strip width and overlap are functions of

7
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coupling. This offset configuration has not previously

been available to the microwave engineer because it has

not been analyzed. An analysis is presented here.

In the following paragraphs, the even and odd mode

impedances are derived for the offset configuration

shown in Fig. 1, in which zero-thickness strips are

located in the dielectric-filled region between infinite

ground planes. First, expressions for the necessary

fringing capacitances are obtained. Then the equations

for the various impedances are derived. Finally, curves

of coupling vs. strip width and offset are presented for

sample configurations. The derivation of fringing capaci-

tance is described in the Appendix.

I ,* w—’ I

/ I.-..4-..4 i
Fig. 1. Offset parallel-coupled strip transmission lines

It will be noted that the uncoupled single strip, which

is obtained when the separation is made very large, is

not centered between the ground planes. This con-

figuration has been avoided by some workers in the field

because of concern over parallel-plate radiation. This

concern is unfounded. The same care must be taken

with any unbounded transmission line to avoid radia-

tion, whether it uses a centered strip, an off-center strip,

or an open strip over single ground plane. The configura-

tion described in this paper has been used successfully

over three years by the author and his associates.

FRINGING CAPACITANCES

The technique used to determine even and odd mode

impedance is an approximate one. That is, the capaci-

tance between strip and ground is separated into

parallel-plate and fringing components. As a result,

there are two cases to be considered, depending on the

relative positions of the strip edges. In Fig. 2 (a), the

case for tight coupling is shown, and the approximate

limitations on strip dimensions are

For loose coupling, shown in Fig. 2(b), the limitations

are

w
— ~ 0.35
1–s

2W0
— > 0.85.
l+s–

(a)

i C=% -i i-l
I II I
I I I I

(b)

Fig. 2. Coupling configurations. (a) Configuration for tight
coupling. (b) Configuration for loose coupling.

The effects of these limitations on the allowable range

of strip configuration, maximum coupling, and char-

acteristic impedance are discussed in a later section.

The derivation of the fringing capacitances is dis-

cussed in the Appendix. The Schwartz-Cristofel trans-

formation is used to achieve the following results:

Tight coupling:

2
?rCfo = — — log .s

1–s

+ ~ log
[

pr

(P+ S)(p + 1)(7 – S)(I – r) 1 (1)
s

2s
Tcf. = — —10gs–210g s+410g(s+Pr)

1–s

– logzr(p+s) (p+ l)(r– s)(1 – r)

where

(2)

1+s
p+~

L
r=— (o<p <m).

1+s

()
1+2 ~s—

Loose coupling:

7rcfo= &lOg(.jl:aq))-A’Og’‘3)

Tcf. = +lO’[.;:;)l-+lO”
l+aq

()
–210g —

aq

where

I 2s
a+—

( )1

S+l S+lq= —
2— 1S+l’

(4)
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Furthermore, the conformal mapping procedure yields

the following expressions for offset dimensions:

For tight coupling,

1+s p
Two = —–— log —

2 r

+ +’043(s) “)
For loose coupling,

l–q()rwc=slog~+(l–s)log —
l+a”

(6)
a

IMPEDANCE EQUATIONS

Although it is possible to plot families of curves re-

lating CfO, Cfd, w, w,, and s, it is very useful to relate the

fringing and parallel-plate capacitances and the asso-

ciated strip dimensions to the even and odd mode im-

pedances, which are the basic design parameters of any

component in which the coupled lines are used. One

listing of parameters, which can be considered the inde-

pendent variables, is

2,, the characteristic impedance

e,, the relative dielectric constant of the medium

p, the ratio of Z~~ to Ze~.

The basic relationships are

zoo = zo/dp
(7)

c, = 1207r/dx z.,

co = 1201i;dFzoo.

For tight cou]pling, the mode capacitances may be

expressed

“0=2”(++)+cf0

2W
—— + cf.

S(I – s)

(8)

where Cf. and Cj, are given by (1) and (2), and the

parallel-plate capacitances are those indicated in Fig.

2 (a). Note that the capacitance between strips is ap-

proximated by 2w/s rather than 2wc/s, an artifice which

simplifies the expressions for fringing capacitances and

allows explicit solution.

For loose coupling, the capacitances are

( 1 1
co = 2W

)
—+— +Cfo– Cf(a=m)
1–s 1+s

‘(9)

where Cfo and Cf, are given by (3) and (4), and Cf(a = ‘W)

is the fringing capacitance at the edge of a single, un-

coupled strip. The parallel-plate capacitances are those

indicated in Fig. 2(b). It is easily found that

2 1–s
7rCf(a=m)=—

()
— log —
1+s 2

2 1+s
—

()
— log ~— .
1–s

(lo)

At this point, the continuity of the development is

strengthened if the cases are treated separately. It is

noted that the equations so far obtained do not even

present an implicit solution to the prob~em. It is neces-

sary to find some connection between the results of the

conformal mapping and the basic relationships of

(7)-(9).

Derivation for ~~gkt Coupling

For tight coupling, the required connection results

from

Ce–sco= cfe–scfo [from (?))]

()-[1
~+~’

2 s
. — log — [from (1) and (2)]

T

()

pv
—

s

l–ps() 1207r
.

d; ‘–de, Z.
[from (17)]

Therefore, the implicit solution for tight coupling is

()-[ !
~+g-

1 – ps V“e,zo s
— log ——

4;– = 6~~2

01

pr “
—

s-

It is possible to eliminate ~ and r as follows:

Let ~ = (1 + p?’/s)’

(Pf/s) ‘exw%(%?](11)

The two signs of the square root represent the plus or

minus values of WO which produce the same value (of

C. – sC.. Using the equation for r in terms of P, ,j is

found to be
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‘B-’’(+)(:Y’B’1)1+4sBsB,...
p=

2
(13)

where the plus sign on the root gives P >0.

The steps in the explicit solution, given 20, e,, p, and s,

are now complete. The procedure is to solve (11) for A,

(12) for B, (13) for P and r, then use (1) or (2) for Cf.

or Cfg, (7) and (8) for W, and, finally, (5) for w..

It is worthwhile making a comparison with the results

of Cohn for parallel-coupled strips. Examination of (5)

reveals that WO= O for P = r = VI. For this condition,

(1) and (2) reduce to

cf.=–?
[

J—logs+:log(l–s)
T 1–s s 1

or

1
k=

()

(15)
~AC

exp — –1
2

Using the equation for q in terms of a, then solving

for a in terms of k,

The positive root guarantees a> O.

The explicit solution for loose coupling, given 20, e,,

p, and s, is now accomplished by solving (8) for AC, (15)

for k, (16) for a and q, (3) or (4) for Cfo and Cf,, (9) for

w, and (6) for WC.

2s
cf, =–—

[ 1—logs+log (l–s)–log4 ,
n- 1–s

which are equivalent to Cohn’s approximate results, as

given in his equations (4), (5), (6), and (7) [6]. Further-

more, the implicit solution reduces to

1 – proms 4720
= — log 4.

d Pm.. 607r2
(14)

Equation (14) is extremely useful. It relates p~~~, s, c,,

and Z. in a single expression and allows direct solution

of the zero-offset configuration. In many practical cases,

one has a maximum value of p to be realized; (14)

specifies the required corresponding value of s. It is

emphasized, however, that (14) is limited by the ap-

proximate analysis used. For very large p~~~ or small S,

one must use Cohn’s virtually exact equations, (1), (2),

and (3) [6]. In general, (14) holds for

dpmax e, 20
—log 4<0.5,

607r2

provided p~%x >2.

Derivation for Loose Coupling

For loose coupling, the required combination of ex-

pressions is

120T l+p

()
AC=Co–Ce=——---=-

4; z. 4P

l+aq
——

( )

~ log —

T aq

Letting

k = aq,

2 l+k

()
AC= —log —

n’ k

[from (8) ]

[from (3) and (4)]

COLLECTED EQUATIONS

An orderly arrangement of the design equations re-

sulting from the previous section is presented in order

to facilitate the computation of parameters.

Equations for tight coupling:

A= ‘Xt%cii’’s)l

‘B-l(:)+K%W-l)’+’s;
*=

2

[

1+s
p+~

SB
y=— also, r = .O<p<m

P

()
1 + p ‘L::

1

{

2
cjo=A – — logs

T 1–s

+ ~ log
[

pr

s (P+ S)(l+P)G’-S)(1–V) 1}
120?r4p

co =
&z.

S(l–s)
~= ~ (c. – cf.)

‘o=:[(l+s)’O’++(l-s)10g(5)re)l
The condition for tightest coupling WO= O is given by

l– Pm. J dyzo
— log 4.

‘dPmx = 60r2
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Equations for loose coupling:

120?r+;
co = ---=Z

1207r p -– 1
AC=— ———

4;Z0 \/;

k= ‘ -
rAC

exp —–1
2

L

s—k
.—

S+l

1

2s
a+—

S+l

I S+l
a+—

2

21

[

l+a 1
cf. = — — log — log g

T 1+s a(l – g) – 1–s 1
1

[

l–q

( )1w.=—slog:~+(l —s) log —
7i’ a l+a

Cf(a = GO)

ILLUSTRATIVE RESLTLTS AND LIMITATIONS

ON PARAMETERS

In the particular application for which the coupled

impedances were evaluated, two of the parameters of

(14) were held fixed. The dielectric constant G was 2.32,

corresponding to polyolefm materials, and the character-

istic impedance was 50 ohms. It is conceivable that

many similar situations, in which the operating im-

pedance and the dielectric material are predetermined,

might be encountered. In such a case, the remaining

parameters s and p~,x can be related by a curve, as

shown in Fig. 3. The value of p~~. varies from two to six,

and the approximate range of s is 0.1 to 0.4, accounting

for the probable range of coupling values amenable to

this strip con6guration.

Also shown on the curve are the values ofs which cor-

respond to layer thickness ratios involving small inte-

gral numbers. These values are more easily realized in

terms of readily available sheet thicknesses, although it

must be noted that material manufacturers are develop-

ing considerable flexibility in this respect.

Since the fringing capacitances were determined by an

approximate procedure and the accuracy of the results

was based on maintaining certain limitations on the

strip dimensions, it is of interest to estimate the effects

of these limitations on the allowable physical and elec-

trical parameters of the coupled strip configuration, The

following limitations were imposed by the fringing

capacitance calculation:

In general:

w
~ (),35,

1–s

For loose coupling:

2W0
— ~ 0.85.
“1+s

For tight coupling:

The first inequality concerns the parallel-plate region

between the outer surface of the strip and the ground

plane. The second expression deals with the region lbe-

tween the ‘(exposed” inner strip surface andl the oppo~ite

ground plane; the constant chosen for this condition is

0.85 rather than 0.7 because the fringing fields from the

edge of the intervening strip extend intcl this region.

The third relation defines the parallel-plate region lbe-

tween strips.

The effects on strip spacing s and on V’;,ZO are con-

sidered in Fig. 4. Curve A is the limit imposed by the

relationship 220/(1 +s) ~ 0.7 for a single uncoupled strip.

Curve B is obtained when the strips are located one over

the other (wO = O), and the limitation w/s a 0.7 is applied.

Thus, curves A and B define the allowable parameters

for parallel coupled strips when offsetting is not used.

Curve C is obtained by setting we/s== 0.7 and

2w0/(1 +s) = 0.85, then assuming w = WO+700 for the un-

coupled strip and calculating the corresponding value

of ~~,Zo. Since the width of coupled strips is always

smaller than that of uncoupled strips, curve C is too

high. Two calculated points are available which satisfy

the criteria of curve C, and they are shown on the

dashed curve. The dashed curve is a rough estimatt of

the correct location of curve C. The shaded region repre-

sents the range of parameters for which the strip dimen-

sions for all values of coupling are very accurately (ob-

tained. That is, the curves based on tight- and loclse-

coupling approximation can be joined by a negligible

discontinuity.

The results of Fig. 4 should not be interpreted to for-

bid the use of parameters falling outside of the shaded

region. In some cases, the coupling values which con-e-

spond to inaccurate strip dimensions are not used. In

other cases, the inaccurate portions of the curves can be

corrected by interpolation. However, it is seen that the

most versatile application of this design procedure is

obtained for values of s in the range of approximate ely

0.14 to 0.20, corresponding to values of pm.. in the

neighborhood of 3.5 to 4.5.
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Fig. 3. Relationship between s and p.
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L:
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0 01 0.2 0.3 04

s

A ~ > .7 for single uncoupled strip

B $> .7 for parallel strips, maximum coupling

c ~> .7,’WO~ > .85 for offset strips; approximate

2W
D Computed paints for ‘~ > .7, ~~ > .85

Fig. 4. Limitation on parameters, s and ~zZo.
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-i.4 -0.3 -0.2 -0. ! o 0.1 0.2 03 04 0.5 0.6 0.7 08

w and w=

Fig. 5. Representative coupling curves.

Figure 5 contains curves relating coupling coefficient

~=ti:-l

UP+l

to strip dimensions for representative values of s, for

Z.= 50Sl and G = 2.32. An indication of the approxima-

tion involved in the analysis is seen in the imperfect

match of the strong- and weak-coupling curves,

CONCLUSIONS

A design procedure for offset parallel-coupled strips

has been derived. The equations are arranged in terms

of the electrica I parameters, coupling strength (p) and

characteristic ijnpedance (ZO). Because of the approxi-

mations involved in the conformal mapping analysis,

limitations are imposed on the range of characteristic

impedance that can be used and on the ratio of strip

separation to ground-plane spacing(s). However, the

ranges in which good accuracy is achieved are those most

likely to be used in practical strip transmission-line com-

ponents and circuits.

APPENDIX

llERIV&rION OF FRINGING C~P~CITANCES

The procedure for determining the fringing capaci-

tances for a (strip transmission-line configuration is

straightforward and is outlined for review purposes.

The term “fringing” is generally used when the fields at

one edge of the strip do not significantly influence those

at the opposite edge. Thus, the strips can be assumed to

be infinitely wide, as indicated in Fig. 6. The fringing

capacitance is clefined as the difference between the ideal

parallel-plate capacitance and the actual value. For in-

finite strips, of course, the capacitances become infinite,

but the difference is finite.

The steps in the procedure are as follows:

1)

2)

3)

4)

If

The conductor configuration of Fig. 6 is mapped

onto the real axis of the complex plane by means

of the Schwartz-Cristofel transformation. In the

cases under consideration, the transformation is

particularly simple. For both configurations con-

sidered, the polygon in the w-plane being mapped

onto a real axis of the z-plane has six sides, and the

vertex angles are all ~ 180 degrees. One result of

this condition is that the differential equation of

the transformation is readily soluble in terms of

logarithmic functions.

The parallel-plate capacitances for even and odd

modes are selected, and the apprclpriate expres-

sions are written.

The actual capacitances are determined by calcu-

lating charge density for unit voltages on the

strips. The result is in the form of capacitimce

distribution.

The fringing capacitance is obtained by subtract-

ing the expression of Step 2 from that of Step 3

and integrating over the infinite strip cross section.

the reader is unfamiliar with this procedure, an

excellent description and illustrative example has re-

cently been presented by Wheeler [7].

Case for Large p: Considering first the case for strong

coupling or large p, the conformal transformatif~n is

shown in Fig. 7. The equation of the transformation is

1

[
–log(z - 1)(.+:)]1–s

w=— Slogz+
T 2
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-m +.

(a)

--- +
.

(b)

Fig. 6. Infinite strip approximation. (a) Strong coupling.
(b) Loose coupling.
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w-plane
w. —

L- V=*l
‘3

“A — I
I

‘5 ‘1

V=+l
‘6 — I-.o-l

()~=llog=+; log(z.l)Z+E
n s

I z-plane

‘1 ‘2 ‘3 ‘4 ‘5 ‘6

.< -y -P or 1
s

Fig. 7. Conformal transformation—large p.

where

f’=
1+s 2s

()

1+s
l+P ~ —<r-=—

1+s 2“

It is immediately possible to express the offset width wO,

in terms of s, P, and r,

1 1+s
~o. —

[
—log~+

T 2 Y ?lO’(%(=)l
The basis for the parallel-plate capacitances is indi-

cated in Fig. 8. For the even mode, CP, = Cl+ C2; for the

odd mode, CP~ = Cl+ C2 + C%+ C~. The capacitance of

both strips to ground is computed for this case because

the strip arrangement is not symmetrical. The resulting

c1 I

——. ..— — L—7

C2 1

I

Fig, 8. Parallel-plate capacitances—large p.

w-plane

‘6 —
V=+ I

J
“5

v= 1
‘2

‘4 —
1- WC(-)

‘1

‘3

‘=4’-’)’”’(=4)+’’-’’’””]

L-p’””’-0 -0
q

o q

Fig. 9. Conformal transformation—small p.

II
c1

I I c~

C2 II
1~

II cl
I I

Fig. 10. Parallel-plate capacitances—small p.

fringe capacitance is equal to the sum of the fringe

capacitances of both edges of a single strip of finite

width. Application of the previously mentioned con-

ventional techniques yields the required results for the

fringing capacitances.

Case for Small p: The conformal transformation for

the loose coupling configuration is shown in Fig. 9. The

equation of the transformation is

‘=%-s’’O’(:%)+‘l+s’lO’zl
where

1
2s

a+—
S+l S+l 1 O<a<m

q= (

2

1

S+l 2s S+l
a+— —<q <—---

[ 2 S+l 2

As for the strong coupling case, it is possible to deter-

mine WC directly:

‘=3s10’(:)+’1-s’10’(s)1
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A negative value of w. represents a gap rather tha,n over-

lap between strip edges.

The basis for parallel-plate capacitance is shown in

Fig. 10. For both even and odd modes, C,= Cl+ CZ.

Since the strip arrangement is symmetrical in this case,

the fringe capacitance is calculated for only one strip.

Again, the required expressions for fringing capacitance

are found by conventional methods. -
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Theoretical Analysis of Twin4!Hab Phase

Shifters in Rectangular Waveguide

ERNST SCHLOMANN

Abstracf—The differential phase shift and the losses to be ex-

pected in phase shdters using two oppositely magnetized ferrite slabs

located symmetrically in a rectangular waveguide have been calcu-

lated for various locations and thicknesses of the ferrite slabs. For

small thicknesses of the ferrite slabs, the differential phase shift in-

creases rapidly witk increasing thickness reaching a maximum when

the thickness is approximately 1/10 of the free space wavelength.

The calculated insertion loss of a 360-degree phase shifter decreases

with increasing slab thickness for small thickness, reaching a minL

mum when the thickness is approximately 1/25 of the free space

wavelength. The minimum insertion loss calculated with the assump-

tion that the imaginary part of the diagonal component of the perme-

ability tensor is 0.01 and that dielectric loss can be neglected is ap-

proximately 0.85 dlB. The peak power handling capability has also

been analyzed. U can conveniently be summarized in terms of a high-

power figure of merit. For reasonably high values of thk figure of

merit, a peak power capability of the order of 100 kW is anticipated.

I. IN~RODucT1O~

o

NE OF THE more promising device configura-

tions for digital ferrite phase shifters is that of a

rectangular waveguide containing circumferen-
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tially magnetized ferrite toroids of suitablle length ~1],

[2]. Such a structure is shown in Fig. 1. A very similar

structure, which is more readily amenable to theoretical

analysis, is shown in Fig. 2. Here the ferrite toroid lhas

been replaced by two oppositely magnetized slabs which

extend over the complete height of the waveguide. The

propagation of electromagnetic waves through wa,ve-

guides of the type shown in Fig. 2 has previously been

analyzed by Lax et al. [3], [4] and by von Aulock [5].

Here we use substantially the notation of von Aulock.

In the previous work, only the differential phase shift

and the field configuration have been discussed. The

present paper contains more detailed results than pre-

viously published, concerning the differential phase shift

and its dependence upon parameters such as spacing,

width, dielectric constant, and remanent rnag-netization

of the ferrite slabs. In addition, the present paper con-

tains a discussion of the insertion loss and the pleak

power limitations of these devices.

For odd TE.O-modes the characteristic equation for

the reduced propagation constant r can be expressed as

v(1 + cot al cot az) + { cot al + 7 cot ff~
cot ~ . —— —–-–-—– (1)

cot a] cot a!z — 1


